
/

V

Input/Output Behavior of
Supercomputing Applications

,is- dt _Z/2

Ethan L. Miller

(NA_A-CR-1579So) INPUT/OUTPUT _EHAV[OR OF

SUPERCOMPUTING AppLICATIONS (Ca|iforniaCSCL 09B

Univ.) 32 p
G31_I

Ngl-lq633

Unclas

0332_50

I ,
• l

/ \
!

' """ -(;"':o i :"i

I /K _
Report No. UCB/CSD 91/616! l

_ I

--" * l_ January 1991

.I I
[.._ [_ Computer Science Divtfdon (EECS)

l._ _" __ University of California

| ![_ _ ___i_t Berkeley, California 94720

!

Input/Output Behavior of Supercomputing Applications

Ethan L. Miller

Computer Science Division
Department of Electrical Engineering

and Computer Science
University of California, Berkeley

Berkeley, CA 94720
December 14, 1990

ABSTRACt:

Tits paper describes the collection and analysis of supercomputer I/O
traces and their use in a collection of buffering and caching
simulations. TJ,As serves two purposes. First, it gives a model of
how individual applications running on supercomputers request f'fl¢
system I/0, allowing system designers to optimize I/0 hardware and
file system algorithms to that model. Second, the buffering
simulations show what resources are needed to maximize the CPU

utilization of a supercomputer given a very bursty I/0 request rate.
By using read-ahead and write-behind in a large solid-state disk, one
or two applications were sufficient to fully utilize a Cray Y-MP CPU.

1. Introduction

Over the last few years, CPUs have seen tremendous gains in performance. I/0 systems and

memory systems, however, have not enjoyed the san_ rate of increase. As a result, supercomputer

applications are generating more data, but I/O systems are becoming less able to cope with this huge

volume of information. Muldprocessors are exacerbating this problem, as the number of disks and

tape dr/yes in the I/0 system, and titus aggregate//0 bandwidth, increase. Bandwidth is not

usually scaled up at the same rate as the aggregate processing speed, however. According to

Amdahl's metric, each MIPS (million instructions per second) should be accompanied by one Mbit

-l-

per secondof I/0. Solving this problem requires correct matching of bandwidth capability to

applicationbandwidth requirements,and usingbufferingtoreduce thepeak bandwidth thattheI/O

system must handle. To betterdetermine the necessaryhardware bandwidth and software buffer

sizingand policies,the/dO patternsof applicationsrunning on such computers must firstbe

analyzed. To do thisrequires/dO accesstracesfrom realsupcrcomputing applications,which wc

have gatheredforthe analysisinthisreport.

This paper firstexamines generalfilesystem characteristics,especiallythose important to super-

computers. Next, the applicationswhich were tracedwillbe described,followed by some analysis

of thetraces.Finally,we presentthe resultsof simulationsof variousmethods, such as read-ahead

and write-behind,toreducepeak and overalll]O demand forsupcrcomputer fileaccesspatterns.

2. Overview

2.1. Conventional File Systems

Caching, themost effectivemethod forreducing IX) bandwidth rexluiremcnts,has been widely used

in conventionalfilesystems. Itsucceeds because of thepropertiescommonly exhibitedby many

workstationand minicomputer applications,such as localityof referenceintime and space [5].For

example, with a 2 MB cache on a VAX, only 17.7% of the applications'requestshad tobc fetched

from disk. Pmfetching data intoa cache alsoreduces the instantaneousdemand on an I/O system

by spreading out demand and by predicting/dO references.This has the effectof reducing the

number of requests,though not nccessarUy the amount of datatransferred.In [5],sequentialreads

and writesaccounted forover90% of theaccessestofileswhich were eitherread or written,but not

both, and about 67% oftotaldatatransferred.

Another method of reducing/dOs from cache to disk is delayed writes. Delayed writes require a

write-behind cache policy, which allows a program to continue executing after writing data to the

-2-

cachewithout waitingfor thedamto be written to disk. In Sprite [4], data is not writmn back to disk

for 30 to 60 seconds. Every 30 seconds, all data in the cache that is older than 30 seconds is

written to disk, allowing the operating system to group all the writes. This allows temporary files

which exist for less than 30 seconds, such as those generated by ex)mpilers, to be deleted and thus

never written to disk. The 30 second delay is itself a f'fle system parameter, and balances the

reduced bandwidth to disk against the risk of losing data by not writing it to disk immediately. By

totally eliminating disk I/Os associated with such files, the required bandwidth from cache to disk is

reduced further.

These methods can be applied to supercomputer file systems, but there must be some changes to

reflect the differences between interactive and small batch jobs run on smaller computers and the

large vecto_ea:l applications run on supercomputers.

2.2. Supercomputer Environment

The production supercomputer environment is different from a conventional workstation and

minicomputer environment. It is characterized by a few very large processes that consume huge

amounts of memory and CPU time. Jobs are not interactive; instead, they are submitted in batch

and run whenever the scheduler can find memory space and CPU time for them. This difference

allows the scheduler better to plan usage of memory and CPU resources, as it has a relatively static

queue of jobs to run, as opposed to the rapidly changing queue of interactive jobs. Such resource

scheduling is often necessary, however, since many jobs require hundreds of megabytes of

memory and hours of CPU time.

An example of a large supereomputing environment is the Cray Y-MP 8/832 at NASA Ames, the

computer on which we traced several of the applications. This computer has eight processors, each

with a 6 ns cycle time. The system has a total of 128 MW (each word is eight bytes long) shared

-3-

among the eight processors. The I/O system has many high-speed disks, each capable of sustaining

9.6 MB/sec, totalling 35.2 GB, a 256 MW solid state disk (SSD) acting as an operating-system

managed cache for a single f'zlesystem (not the entire collection of disks), and severai tcrabytes of

nearline and offline tape storage [2,3]. The tape storage is divided into two parts--a nearline

storage facility called the Mass Storage System (MSS), which can automatically mount tapes with

requested data, and the extensive offline tape library which r_quires operator intervention. The

NASA Cray system already has the maximum configuration of Y-MP memory (128 MW), so I/O

problems cannot bc alleviated simply by adding more primary memory.

The UNICOS processschedulingmechanism atNASA alsoaffectsthe way programmers choose to

structuretheirimplementations,and thusI/O demands. Batch jobs,which include any program

requiringovcr 10 minutes ofCray CPU time,arequeued accordingto two resourcete,quircments----

CPU time and memory space. As theCray Y-MP does not have virtualmemory, allof a program's

memory must bc contiguouslyallocatedwhen theprogram startsup, and cannot bc releaseduntil

the program finishes.To simplifymemory allocation,each queue isgiven a fixedmemory space.

A job r_ady torun and residinginmemory isrun on any of the eightprocessorsthatisavailable.It

runs untilitmust wait for a disk I/O,at which time itissuspended. This program remains in

memory, and another program thatisready torun isgiven to the thatprocessor. Since therearc

eightprocessors,theremust be atleasteightjobs in memory and ready to run to keep allof the

processors busy. In practice,n+] jobs residentin main memory willkeep n processors busy,

given a typicalsupercomputer workload [8].To get thesen+] jobs,a singlequeue, especiallyone

with low memory r_)quirements,may have multipleapplicationsinmemory atthe same time. Thus,

for a given amount of CPU time rcquirrxlby an application,turnaround time isshortestfor the

applicationwhich requires the leastmain memory. Programmers take advantage of thisby

structuringtheirprogram touse smallerin-memory datastructureswhile stagingdatato/fromSSD

or disk.

-4-

2.3. Supercomputer Applications

Because of their high-speed vector processing ability, supercomputcrs arc i&ally suited to problems

that require manipulations of large arrays of data such as computational chemistry, computational

fluid dynamics, su'uctural dynamics, and seismology, to name a few. These problems all require

large numbers of floating-point computations, which are usually vectorizable, over large data sets:

from hundreds of megabytes up to _ns or hundrrxts of gigabytcs for some seismic computations.

In most cases, the application performs multiple iterations over the data set, as when simulating a

model through time.

3. Applications Traced

The f'n'stpartof the study was an analysisof the I/O patternsof actualapplications.We gathered

tracesfrom a varietyof applicationsrunning on Cray computers, usuallyY-MPs. We chose towacc

applicationswith high I/O rates,both in megabytes per second and UOs per second. While many

supercomputer applicationsdo not perform largeamounts of I/O [8],we decided to concentrateon

applicationsthatdo a lotof I/O. I/O-intensiveapplicationsstressthe I/O system more, revealing

performance bottlenecks.Those thatperform littleI/O areeasy tocharacterize,as willbe shown

with the two tracesthathad low levelsof I/O.

The tracesfellintoseveralcategories.Most were computational fluiddynamics (CFD) problems,

which arc concerned with modeling the flows of fluids,such as water and air.However, each

modeled differentphysicalobjectsand made use of differentalgorithms.Several of the programs

were climatemodels, while othersmodeled vorticesaround a moving blade.One program solveda

structuraldynamics problem, and one did polynomial factorization.In Table I,we summarize

some basic information about the applications.Running time isthe amount of CPU time each

program required. All of the othernumbers are relativetothistime, not elapsed wall clock time.

-5-

Application

bvi(CFD)

ccm(climate)

forma (structural)

gcm (climate)

los Oargc eddy)

!venus (climate)

uow (oolynomial)

Running Total data
Time (see)size (MB)

1_8 171

205 11.6

206 30.0

1897 229

146 224

379 55.2

596

Total UO
done (MB)

221835

I_812

15T155

266.2

71803

16w712

61.5

Number
of I/Os

1_8o757

54r125

475,826

7,953

22T384

, 34,904

1#40

Avg I/O
size _MB_

0.016

0.031

0.030

0.031

0.317

0.032

0.445

MB/sec IOslsec

18.2 1097

8.8 264

73.6 2310

0.14 4.2

53.4 153

44.1 92

0.10 3.1

Table1 :Characteristicsofthetracedapplications.

Total UO done isthetotalamount ofdatatheprogram mad and wrote,and number of I/Os is

thenumber ofreadand writecallstheprogram made tothefilesystem.The totalsizeofthedata

set,which was thesum ofthesizesofallthefilestheprogram accessed,islistedundertotaldata

size.

The firstgroup is theclimatemodels. These includedgcm (GlobalClimate Model), ccm

(Community ClimateModel),and venus (a simulationof Venus'atmosphere).These were all

CFD modelswhich simulatedatmospheres.

The major differencesbetween theatmospheremodels were the sizesof thedataarraysinthe

simulations,themethodsusedtoactuallyimplementthealgorithms,and thetradcoffeachalgorithm

made between main memory sizeand I/O system usage. Gem was primarilyan in-memory

simulation--theonlydatathatwent throughtheoperatingsystemwere finalresults.The datafit

intoa main memory array,obviatingtheneedtostagedatafrom disk.As a result,theprogram did

-6-

few I/Os. The venus code went to the other extreme. To get into a shorter job queue, the

program's implernentor decided to use a very small in-memory array. Thus, the program accessed

the file system frequently to stage the required data to and from memory. Ccm took the

intermediate point between the two, requiring fewer megabytes per second of program execution

than venus but far more than gem, probably because its in-memory data array was intermediate in

size between the other two programs'.

The bvi (blade-vortex interaction)program was also a CFD program, but it simulated the

interactionsof a helicopterblade with the airaround it.Itwas theonly one of theprograms traced

explicitlydesigned for use with the SSD (solidstatedisk)on the Cray. Since the SSD has zero

seek time and a very high transferrate,the program did not suffera major performance lossfrom

the many small I/Os itmade. I/Os to and from the SSD are done without suspending the process

requestingthe I/O,because the data isre_eved quickly. However, as willbe discussedlater,the

fflcsystem overhead may have slowed the program down by using more operatingsystem time.

This added a sizablepenalty,more than would be incurred for a largerequest replacingseveral

small ones.

The les (large eddy simulation) application used the Navier-Stokes method with turbulence. This

algorithm only calculates large-scale effects from the Navier-Stokes equations and directly models

the small-scale effects. A more complete description of the algorithm is beyond this paper, but one

can be found in [6].

Upw (approximate polynomial factorization) did the least I/O of any application traced. This

program read a small inputfile,computed forten CPU minutes, and wrote out an answer. Itisan

important program, however, sincethisisa representativeI/O patternfor some applications.The

program infrequentlyrequestsa few largeI/Os.

-7-

The last program traced was called forma. This program was originally written for a Cray 1, with

its small memory, and uses sparse matrices to solve structural dynamics problems. In this

program, I/O serves a secondary purpose beyond simply staging data in and out. By breaking up

the data array into blocks, empty blocks can be easily identified and created in memory instead of

being staged in. Thus, there is a secondary tradeoff between I/O size and required bandwidth. A

larger block would allow more efficient I/O requests, but it also might require more I/O bandwidth,

since a non-empty subarray of size 2N x 2N might contain three empty N x N arrays. The 2N x 2N

subarrays would then require four times the data rate of the N x N subarrays. The programmer

seems to have chosen a relatively large access size despite the possible advantages of using a

smaller one.

4. Tracing Methods

4.1. Information Traced

The traces gathered included two types of information. First, they recorded file and disk reference

information, so the pattern of references to the file system (for logical-level traces) and physical disk

sectors (for physical-level traces) could be reconstructed. File identifiers corresponded to file

opens; if the same file was opened twice by a program, it received two different identifiers.

Second, timestamps were taken for each I/O. There were thr_ timesmmps for each I/O event. The

first timestamp was total elapsed wall time, which was obtained from a timer register in the CPU.

This value was in units most convenient to the system; for the tray Y-MP, it was in 6 ns clock

ticks, as there is a counter in the CPU which is incremented every clock cycle. For traces in our

standard format, this value was converted to 10 tts units, as we believed this was sufficient time

resolution for I/O traces. The sex.ond thncstamp measured the wall clock time between when the IX)

request was made by the application and when the completion status was returned. This timestamp

-8-

op DlP, ,Dl
,D,I ,9 1 I

Flags - logical/physical I/O, read/write, _Tnchtonous/asynchronous
Compression - information about which fields can be calculated from previous records
Offset, size - where in the fie (disk) the IX) took place
Start time - startof this I/C)relative to the start of the previous
Elapsed time - duration until completion of this I/O
File ID - identify file (disk) the IX) occured on
09 ID - unique for each call to the file system
Pnac/D - process identifier

Figure 1

might have been affected by the scheduler, since a program that waits for I/O is not guaranteed to be

restarted immediately when the UO completes. The third timestamp was process elapsed time,

indicating the amount of CPU time the particular process had been running. Thus, the effects of

multiprogramming could be filtered, as the process elapsed time between UO events would be

constant no matter how often the process was swapped out.

4.2. Trace Format

The I/O accesses the applications made were all recorded in a standard trace format that was

designed to be used for both logical and physical I/O waces. The format was also designed with

trace compression in mind, as mentioned in [7]. This section gives a high-level of the format; for

details,see the appendix.

Figure 1 shows a sample trace record. Compression techniques worked especiallywell for

supercomputer traces for two reasons_file accesses were highly sequential, and a very large

majority of the accesseswent toonly a small number of files.Both of thesecharacteristicswillbe

discussedinmore detaillater.

-9-

To save disk space and u'ace-gathering time, the traces were compressed in two ways. First, some

fields could be specified reladve to the record immediately preceding it. These fields included the

timestamp fields and the file identifier field. Instead of recording a full 8 or 9 digit time, only the

elapsed time since the last record was recorded. A bit in the compression field was set if the file

identifier was the same as in the previous record. The second method of compressing data was to

record I/0 sizes, I/0 lengths, and process identifiers relative to the last IX) made to that file. Again,

a few bits in the compression field could indicate that the IX) was sequential with the last I/0 to that

file, or that the I/0 was the same size as that file's last I/0. In this way, the trace of a program

which made interleaved accesses to several fries, such as venus, was still compressed efficiently.

While we only collected logical-level trace data on the Cray, we included provisions for our trace

format to include physical l/Os as well.

4.3. Trace Gathering Methods on the Cray Y-MP

Allof thedataon theCray Y-MP islogical-leveln'aces.Thisdataincludedlogicalfilenumbers,file

offsets, request sizes, and wall clock and process clock dmestamps. Because no collected data was

internal to the operating system (as physical disk block numbers would be), all the data could be

collected by code running at user level. Thus, no modifications to the operating system were

necessary. This was a distinct advantage on the Cray, since it would have been very difficult to

obtaintheamount ofdedicatedtimenecessarytodebug changestotheoperatingsystem.

Insteadofmodifyingtheoperatingsystem,we changed theuserlibrariesdealingwithI/(3.Cray

providesdatacollectionhooks instandardsystemlibrariesshippedwithUnicos 5.0.These hooks

merelyprovideaggregatedataon I/O,suchasthetotalnumber ofbytesaprocessre,questedandthe

averageand maximum timestodo an I/O.In addition,majoreventssuch asfileopens,closesand

processforksarc_'acedby thestandardCray software,thoughwe didnotusethedatainthesetrace

- 10-

packets except to check some of our results. Trace packets are sent to a process on the Clay called

procstat. The procstat process collects these trace records, which include an 8 word header and

whatever data is necessary for the system call being recorded, and writes the records to a trace f'tle

for later analysis. A diagram of the path trace information rakes is shown in Figm'¢ 2.

read data

& write data

system call system calls

_sults[

iii i iiii i ! i! !i ii i!iiiii i iiiii!iii i !ii i!iiiiiiiiiiiiii ii iii ii iiiii iiiiiiiiiiiiiii iiiii!i i i!i! iiiiiiiii iiiiiiii iiiiiiiiiiiii ii iiiiiiiii iiiiiii ii i iii i!ii i ii iiii!i ii iiiiiiiiiii!iiiii!!!iiiiii i iiii iii

Merely modifying the libraries to produce one trace record per read and write call would have

produced far too much data. The trace record headers are large compared to the amount of data

recorded per call, between three and five words. Operadons on each file were sent in batches, so

one header served for hundreds of I/O calls and the header overhead was amortized over many

calls. In addition, trace packets were forced out every hundr_ thousand I/Os. This was done since

-11-

each packet recorded data for just one file, and a f'd¢ with little I/O, such as a parameter file, might

have two I/Os separated by hundreds of thousands of I/Os to a data f'de. Reconstructing a single

stream of all the accesses from the file of packets requires buffering all the FOs between flushes,

since a packet written during the flush might contain an I/0 access from much earlier in the

program's execution.

There was very little CPU overhead required to collect traces in this manner. There was no

overhead during non-I/O operations because the tracing mechanism was only active during an I/O

call to the operating system. Also, the amount of code executed per I/O was small compared to the

code normally executed by the operating system to handle an I/O request. Overheads were less than

20% of I/O system call time, and total overhead was completely dependent on the amount of I/O

done by the application.

While this trace collection method is standard on UNICOS, and vendor-supplied software contains

most of the code necessary for waeing, the same method could easily be used to instrument standard

libraries on other computers and collect traces from applications running on them. The only major

system requirement is an accurate clock. An operating system which supports Unix-style pipes

would also make it easier to implement the trace collection software because we used pipes to pass

trace data from applications to procstat.

5. I/O Pattern Analysis

There has been much analysis of overall supercomputer performance in both the I/O and CPU

usage. However, the I/O usage studies have focused primarily on overall system performance over

relatively long periods, ranging from many minutes to several weeks [8]. While these studies are

very useful for analyzing current CPUs, inferences from current systems to future systems may be

difficult because parameters change in different ways. For example, larger or smaller memory

- 12-

systems relative to CPU speed will certainly affect overall system performance, but an accurate

picture requires examining individual applications and their interactions under new system

parameters.

5.1. Types of Application I/O

All of the I/O accesses made by the programs can be divided into three types--required, checkpoint,

and data swapping. Required I/Os are similar to hardware cache misses called compulsory in [1].

These consist of I/Os that must be made to read a program's initial state from the disk and write the

final state back to disk when the program has finished. For example, a program might read a

configuration file and perhaps an initial set of data points, and then write out the final set of data

points along with graphical and textual representations of the results. These I/Os, however, do not

contribute much to the overall FO rate. For a program which runs for only 200 seconds, reading 50

MB of configuration and initialization data and writing 100 MB of output, the overall I/O rate is

only .75 MB/sec. This rate is easily sustainable by most workstations, and certainly does not

demand complex solutions. While the peak I/O rates at the start and end of the program will be

high, they will only occupy a small fraction of the total running time of the program. Upw and

gcm are examples of programs that only do compulsory FO.

Checkpoints, the second type of I/O, are used to save the state of a computation in case of a

hardware or software error which would requi_ the simulation to be restarted. A checkpoint file

generally consists of some subset, possibly complete, of the program's in-memory data.

Checkpoints are generally made every few iterations, though making them too often slows the

program down unnecessarily. The application writer balances the cost of writing the checkpoint

against the cost of redoing lost iterations of the simulation. The likelihood of failure determines the

number of iterations between checkpoints. Since checkpoints occur multiple times per program,

they add more to the bandwidth requirement than required I/O, but they also do not place a

- 13-

continuous high demand on the I/O system. For a program that saves 40 MB of state every 20

CPU seconds, the average I/O rate is only 2 MB/sec, far less than the maximum rate most

supercomputers provide. As with required FOs, dealing with peak rates may present a problem,

but since the FOs occur relatively inf_uenfly, it is easy to have another program mary to run (and

not in the checkpoint stage itself) while the first program is waiting for checkpoint I/Os to

complete.

The third type of I/Os are those done because the memory allocated to the problem is insufficient to

hold the entire problem. These I/Os are the equivalent of paging under a paging virtual memory

operating system, but they are generally done under program control because many supercomputers

lack paging. Even when paging exists, the program is better able than the operating system to

predict which data it will need. Unlike the other two types of I/O above, memory-limitation I/O

must be done on every iteration of the algorithm. The entire data set is usually shuttled in and out of

memory at least once, and perhaps more often. If each data point consists of 3 words and requires

200 floating-point operations, there must be 24 bytes of I/O for every 200 FLOPS (this is quite

close to Amdahrs metric, which would require 200 bits, or 25 bytes of I/O for those 200 FLOPS).

For a 200 MFI.L)P processor, the average sustained rate will be almost 25 MB/sec, far more than

either the compulsory FO data rate or the checkpoint IX) data rate. Peak rates are higher still, and in

fact are higher than 200 MB/sec of requests sustained over several CPU seconds.

5.2. I/O Access Characteristics

The I/O accessesthattheapplicationsmake can bc characterizedinseveralways. These included

the total amount of I/O, the read/write ratio both overall and for given files, and the size of each

individual I/O, again overall and for each file. In looking at these characteristics, however, only

"large" files were considered. In most cases, these files were over a few megabytes long, and some

were hundreds of megabytes long. While "small" files, which include parameter files and human-

- 14-

read text output, are important, they do not contribute much to the overall I/O that a supcrcomputer

application must do, as their conu'ibution is dwarfed by accesses to large machine-generated data

files.

All of the programs, with the exception of gem and upw, made many read and write accesses, and

did many I/Os, as can be seen by Table 2. These numbers are per second of CPU time used by the

process.

Program Reads

(MB/sec).

Writes

_MB/sec)

Reads

(IOs/sec)

913
i

Writes

(IOs/sec)
Avg I/O

Isize (KB)

16.1

Read/Write

ratio (data_

bvi 12.3 5.34 185 2.31

ccm 4.25 3.96 135 128 31.9 1.07

forma 62.2 5.68 1990 300 30.4 11.0

gcm 0.0107 , 0.12 0.34 3.85 31.9 0.089

les 24.0 25.2 74 81 325 0.95

0.0012 0.0100 0.037 3.05 32.7 0.12
ii

6O

upw

VenUS 3214.7 45626.4 1.80

Table 2. IX) requestratesand datarams of thetracedapplications.

The only applicationswhich had read/writeratiosmuch under one were gem and upw, as can be

seen in Table 2. They were theprograms thatdid not do much I/C)in thefirstplace,sincetheydid

littleI/O other than compulsory writes.The programs thatdid higher amounts of IX) had higher

read/writeratiosbecause, for those programs, the disk was used to hold largepartsof the array.

For each cycleof thealgorithm,each sectionof thedataiswrittenonce. However, thatdatamay be

read more than once so itcan bc used in the computation in differentplaces. This patternwill

remain no matter how large the memory of the system gets,since a largermemory willsimply

encourage largerproblems, which willkeep the same patterns.A filecache willnot greatlychange

-15-

the read/write ratio to disk. The files arc usually m large that they will not fit into the cache. Since

the entire file is both read and written each iteration, there arc no "hot" blocks that can remain in the

cache between iterations. A cache might, however, decrease the read/write ratio to disk slightly

because "paging" the data array might show spatial locality for reads.

Access size varied between programs, but was relatively constant within programs. The access size

was completely under the programmer's control, so it varied according to how the algorithm was

implemented. As seen in Table 1, accesses on the large files ranged from 32 KB to 512 KB. The

notable exception was bvi, which used the SSD for most of its "disk" accesses. There was no seek

penalty for the SSD, so the small I/(3 penalty was much less than it would be for a normal disk. A

SSD access still paid operating system overhead and transfer time, but it did not incur any latency as

a disk access would.

5.3. Cycles in Program I/O

Since all of the programs implemented iterative algorithms, the programs' I/O patterns followed

cycles that matched the iterations of the program. Often, the data in the files would be read in the

same sequence and with the same I/O request size each cycle. Even when the sequence was not the

same between cycles, each program had a typical I/O request size which stayed constant throughout

the program. Times of high data request rates also followed a pattern; request rate peaks were

generally evenly spaced through the program's execution.

I/O was bursty, as expected, but the bursts came in cycles. The demand patterns for all of the

cycles in a single application were remarkably similar, as Figures 3 and 4 show.

- 16-

100.0-]

80.0

60.0

MB per

CPU second 41.1

20.0

0.0 95.0 190.0 285.0 380.0

Process CPU time (seconds, lsec resolution)

Figure 3. Data rateover time forvenus.

,_01 l

75.0

MB per
CPU second

ili liiLili1
0.0 40.0

iiii
.... 49.8

80.0 120.0 160.0

Process CPU dine (mcomh, lsec resolution)

Fi_n_ 4. Data rateover time for les.

- 17-

File reference patterns also followed cycles. This was especially true for algorithms that operated

on an unchanging array that was larger than the program's memory size. For such applications, the

reference patterns were essentially identical from cycle to cycle. For other applications, the array

might change between iterations of the algorithm. For example, a common method in a CFD

problem is to create more data points in areas of interest for detailed examination. Since these areas

cannot be predicted in advance, the program itself identifies the areas and creates more points,

changing the data array and the disk reference pat_ms.

6. Caching Simulations

The traces collected from the applications can, by themselves, show the behavior of an individual

program. However, a supercomputer rarely runs one job per processor even when in batch mode.

CPU cycles would go unused ff there were no additional programs to run because an application

often must wait for a disk access to complete, and all programs do some FO. On a typical Cray Y-

MP system there are usually few enough I/O requests that n+l programs are sufficient to avoid

wasted cycles on n processors. This rule of thumb requires that programs fit their entire data array

in memory, since any program that must use the disk to store its data will do large amounts of I/O

each cycle. If all currently in-memory programs make many I/O requests, it is likely that more than

one willbe awaiRng I/O allthetime.

6.1. Cache Simulator

We constructeda cache simulatorthatmcx_Is thebehavior of a singleCPU with multipleprocesses

making I/O requests. For each process, there is an input trace in our format, which determines the

size of each I/O and the elapsed time between it and the next IX). Using this information, a simple

scheduler built into the simulator, and a simple disk model, the overall sequence of I/Os that the

-18-

processes will make can be simulated. The position of our buffer simulator relative to the entire file

system is shown in Figure 5.

!

Figure 5. Path an I/O takes from application reqt_st to disk.

The simulator uses a simple round-robin scheduler with a quantum that can be specified each time it

is run. The process-switching overhead, file system code overhead, and interrupt service time are

also parameters that can be set in the simulator.

The diskmodel,likethescheduler,isa simpleone. Sinceourswere logicaltracesand we didnot

model thefilesystem,we couldnotuse physicalblocknumbers.Thus, seektimescouldonlybc

approximated.There was no queueingatthedisks,so thecompletiontimeof a specificI/Owas

dependentonly on thelocationoftheI/Oand how "close"theI/Owas tothepreviousI/O. This

simplification significantly affected our results, as will be shown later.

6.2. Main Memory Buffering

The Rrst set of simulation runs involved file caches that were small enough to fit in a Y-MP's main

memory. On a standardCray,thefilesystemcacheissharedamong alltheprocessors;however,

we were onlymodelingone processor.To avoidmodelingthedynamic divisionofthefilecache

between the processors, we restricted the cache size to a fraction of the memory "allocated" to a

single processor. For example, in a system with 128 MW of memory, the file system cache might

take up between 4 MW and 16 MW of memory--5% to 12%. This would be disu'ibutcd among

eightprocessors,though,soeachprocessorcouldonlyuse I/8thoftheavailablecache,assuming

- 19-

all were running l/O-intensive jobs. In this example, each processor would be limited to 0.5 to 2

MW of file cache space.

Very few oftheapplicationstracedhad I/Othatfitintosucha smallcache.This,combinedwiththe

sequential nature of the programs' I/O, n_ant that most logical I/Os resulted in disk accesses. This

is in contrast to the study in [5], that reported that up to 80% or more of the I/Os could be satisfied

in a file cache. In a supercomputer, a main-memory file system cache is thus used more as a speed-

matching and load-averaging buffer than it is to exploit access locality.

We used two techniques to decrease idle time for a given set of processes, thus increasing CPU

utilization. The first method was prefetching data from disk. Its success was not unexpected, as

[5] showed that prefetching was extremely useful. Because supercomputer FO is both r_gular and

sequential, it was easy to predict the next data bytes the program would request. In several of the

programs, including les, an I/O request was not only sequential with the previous I/O, but was also

the same size. Thus, prefetching the amount of data just read allowed the application to continue

without waiting, but did not fill the cache with data that would be unused for some time.

The second method used was write-behind. While Sprite's delayed writes [4] would have been

difficult to implement in the simulator, it was easy to allow a process to continue executing while

written data had not yet gone to disk. This would also be easier to implement on a supercomputer.

A separate process would be m:luired to check all cache data and decide which of it goes to disk,

but the per-process overhead is high on many supercomputer operating systems because of the large

state which must be saved on process context switches. In Unix-like workloads, delayed writes

can often result in temporary fries being delele.xl fi'om the cache before they must be wri_n to disk

[4,5]. However, most data written to a supercomputer's main memory file cache must go to disk

because iterations take hundreds of seconds and files are hundreds of megabytes long. There is

therefore little advantage to waiting a sbort time to see if data is deleted.

-20-

The main goal of using write-behind and prefetching is to reduce CPU idle time, given a set of

processes execming and requesting I/O. Ideally, there should be no idle CPU cycles, and several of

our simulations approached that with just one or two I/O intensive programs running at the same

time. The program that came closest to fully utilizing a CPU while doing large amounts of I/O was

les, since it was the only program that used asynchronous reads and writes explicitly. Clearly, its

designer spent much time optimizing it for the Cray Y-MP system. Venus was another program

benefiting from write-behind, though not as much from prefetching. In this program, the short

cycles of reading and writing several relatively small files required over 40 MB/s of bandwidth to

disk. While the disks were certainly capable of this rate, the seeks required by interleaving accesses

to six different data files inserted extra delays. With write-behind, the delays did not affect the

programs' running time as much. For example, writebehind reduced idle time from 211 seconds to

1 second for a simulation of two identical copies of venus running with a 128 MB cache.

Read-ahead and write-behind did not have all the effects we expected. We had expected that the

peak demands on the disks would decrease, and the I/O request rate would remain relatively

constant over the execution time of the program. As can be seen from Figure 6, this did not happen

for several reasons. First, the simulator did not slow down disk access times when the disks had

many outstanding requests, as would happen in a real system from queueing delay. Because the

requests were logical file requests, it was impossible to map requests to individual disks for

queueing, so we used a constant access time distribution that did not depend on the number of

currently outstanding I/Os in the disk system. The second reason the request rate was not smoothed

out was bunching at times of high I/O request rates. Ideally, the programs should have their

periodsof high I/O ratearranged in such a way thatthehigh l]O rateperiodof one program comes

during the computation phase of another program. Often, though, the two programs would both

wait for I/O at the same time, such as when one program stops to request a large u'ansferof

-21 -

7O

10.

0
0

Figure 6.
Data rate for 2 simultaneously running copies of venus with a 32 MB cache.

(first 200 seconds of wall time)

uncachcd data. Such a transfermight take as long as 15 ms (the(ray Y-MP disksseek relatively

slowly). The other program might then make a similarrequest,requiring 15 ms as well. Both

requestswould finishatapproximately the same time,and theprocess would repeat.In thisway,

the largeseek and rotationaldelaysmight not be covered by computations inotherprocesses,and

the requests would be unevenly spread out over time.

Another problem thatoccuned when two high-I/O programs ran simultaneouslyisthatone of the

programs grabbed most of thebuffers. This denied theotherprogram a chance todo much IX) and

use the CPU while thefirstprogram was waiting. A limiton the number of buffersa processcould

own did not provide relievethe problem, and actuallyworsened CPU utilizationinseveralcases.

The disadvantageof artificiallyslowing down theprocess thatwas doing largeamounts of I/O did

not outweigh the advantage of allowingmultipleprocessestorun.

6.3. SSD Buffering

While supercomputers do some caching intheirmain memory, there is farmore space available on

the SSD, which cannot be directly used as program memory. In addition, SSDs are built from less

expensive DRAMs, instead of the expensive SRAM used in the Cray Y-MP's memory. Currently,

-22-

UNICOS 5.0 allows two options for using the SSD---system-managed buffersor user-managed

buffers. The advantage of the latter is that the user has more knowledge of which data to stage from

disk. However, managing that staging is a Frogramndng problem which many supcrcomputer

application programmers do not want to undertake. A system which uses this approach may

thereforefindthe SSD undcrutilized.While systcm-manage.,dbuffersinthe SSD arclessefficient

than user-managed buffersmight be, they arc considerablyeasierfor the average user,as they

requireno extraprogramming effort.

To simulatethe SSD on the Cray Y-MP, wc treateditas a huge main-memory cache,and added

per-blockpenaltiesfor cache hits.These were approximately 1 Itsper kilobytetransferred(atI

GB/scc), with some additionaloverhead to setup the transfer.These times were relativelysmall

compared tothe timercquir_ to executea system call.

Several of our traceshad small enough data setsthatthey fitinto the SSD entirely.For these

programs, therewas littleor no idletime,as datawas read from diskonce and writtenback while

the program continued executing. Figure 8 shows an example of this,with two identicalvenus

programs running on the same CPU and not sharingdata sets.Venus, bvi,and ccm allran with

low idletimesin the SSD. Gcm and upw had low idletimes in allof our simulationsbecanse they

did so few I/Os----evenin an 8 MB cache,gcm had only l second of idletime. Since lesran with

litdc idle time on both the SSD and main-memory cache (because ofexplicit asynchronous I/O), all

but one of the applications nearly completely utilized a Cray Y-IVIP CPU by itself when using a 32

SSD cache by itself. The Cray Y-MP at NASA has a 256 NiW SSD, so each proccssor's

share is 32 M'W. Almost all of the mad requests were satisfied by the SSD, so there were very few

disk read requests. However, as can be seen from Figure 7, the writes from cache to disk still did

not come evenly; instead, they were burst3, in the same way that the requests to cache were bursty.

- 23 -

':0 !:-,2,f80 i _ venus(1)

70 . i_, t : _ ._ : ["

,°o
o 50 lOO 15o

time (_¢onds)

Figure 7.
Data rate for 2 simultaneously running copies of venus with a 128 MB cache.

(first 200 seconds of wall time)

6.4. I/O System Configuration

The best configuration for an I/O system, according to our simulations, is to provide as much SSD

storage as possible, and maintain a smaller main memory cache. The largest main memory cache

we believed would be reasonable, a 4 MW cache in a processor's allotment of 16 MW, still did not

allow most I/O-intensive programs to execute without wailing for I/O, even with read-ahead and

write-behind. The cache did not have enough buffer space to allow full read-ahead and write-

behind to relatively slow disks. Figure 8 shows the effects of cache size on the total execution time

of two simultaneously running venus programs.

SSD, on the other, appears to be a much bener soludon. In a 32 MW SSD, all of our programs

except one utilized the CPU over 99%. SSD is more likely than main memory to scale with

processor speed, since the constraints on an SSD menx_'s speed, physical size, and distance from

the CPU arc less likely to be affected by designing for a faster CPU. An SSD is appropriate for a

multiprocessing environment as well; since the SSD communicates like a disk, multiple processors

can access it in file-block-sized chunks instead of word by word, as main memory is accessed.

-24-

5O0

400-

300-"- 200-

100-

0 v v wI I I I II I
4 8 16 32 64 128 256

cache size (MB)

-0- 4K cache blocks

-_-- 8K cache blocks

Figure 8.
Idle time while running two instances of venus with varying cache sizes. Execution time would be 761

seconds if there were no idle time.

Instead of low latency channels requited for main memory, higher latency channels like those used

for network communications can be used.

7. Conclusions

While much attention has been given to CI'U performance in supercomputers, the FO system,

which includes the fde cache, SSD, disks, and tape storage, will play an increasingly larger role in

utilizing the CPU efficiently. We have examined several high-I/O demand supercomputer

applications and shown that they axe highly sequential and very regular in their access patterns.

This information can be used to better design a supercomputer I/O system to fully utilize a

supercomputer CPU, as our buffering simulations show. With a large SSD, only one or two

processes per processor axe needed to keep the CPU fully utilized. While main memory sizes may

- 25 -

not scale as fast as processor speed, SSD sizes may scale more closely, since the constraints on

physical size, distance from the CPU, and small access speed are not as stringent for an SSD. By

implementing read-ahead and write-behind in a supercomputcr's file system and using a solid-state

disk, a few very large processes staging data to and from secondary storage can keep

supercomputer CPUs busy.

References

[1] Bonifas, C. Searching Fro"a Unix Mass Storage System For a Supercomputer
Environment. In Tenth IEEE Symposium on Mass Storage Systems, 1990, pp.
129-133.

[2]

[3]

Hill, M.D. Aspects of Cache Memory and Instruction Buffer Performance, Ph.D.
dissertation, Tech. Report No. UCB/CSD 87/351, University of California,
Berkeley, November 1987.

NAS User Guide, Version 5.0, NAS Systems Division, NASA Ames Research
Center, Moffett Field, CA, January, 1990.

[4] Nelson, M.N., Welch, B.B., and Ousterhout, J.K. Caching in the Sprite Network
File System. ACM Transactions on Computer Systems, Vol. 6, No. 1 (February
1988).

[5] Ousterhout, J.K., Da Costa, H., Harrison, D., Kunze, J.A., Kupfer, M., and
Thompson, J.G. A Trace-Driven analysis of the UNIX 4.2 BSD File System.
ACM Operating Systems Review, Vol. 19, No. 5 (1985), pp. 15-24.

[6] Peterson, V.L., Kim, J., Hoist, T.L., Deiwert, G.S., Cooper, D.M., Watson,
A.B., and Bailey, F.R. Supercomputer Requirements for Selected Disciplines
Important to Aerospace. Proceedings of the IEEE, Vol. 77, No. 7 (July 1989), pp.
1038-1054.

[71 Samples, A.D. Mache: No-Loss Trace Compaction. Tech. Rept. UCB/CSD 88/446
University of California, Berkeley, 1988.

IS] Williams, E., Myers, C.T., and Koskda, R. The Characterization of Two
Scientific Workloads Using the Clay X-MP Performance Monitor. In
Supercomputing "90, 1990.

- 26 -

Appendix

This appendix gives a detailed description of our trace format. All of our traces were in ASCII

instead of binary format. Surprisingly, text traces were shorter than binary traces. This savings

occurred by converting integers which took 4 bytes in binary format into variable-length printed

ASCII. Since many values were only 1 or 2 printed characters, this conversion saved space. Text

traces have the added advantage of being machine-independent; in particular, there are no problems

with byte order within words or word length.

While our permanent tracesarc in our format,tracesshould be gathered in whatever way ismost

convenient and convertedtoour formatlater.This has two advantages. First,theremay alreadybc

some tracing facilities in place on the system being traced. It is easier to make minor modifications

to gather a little more data than it is to rewrite al] of the tracing code to generate output in our format.

Second, convening traces from the "natural" format to our format will require CPU cycles,

especially to convert time values from the local system clock to 10 _ts ticks. This post-processing

should be done after the trace has been collected so it doesn't affect whatever is being traced.

Each trace record consistsof up to I0 fields.Five of these arc present in every tracerecord--

recordType, compression, startTime, deltaTime, and processTime. The compression

fielddetermines which of the remaining fivefieldsare present,as explained in the "include"fdc

which follows.

Processld is a unique identifier for the process which requested the I/O which the trace record

represents. Usually, it is simplest to use whatever identifier the operating system assigns to the

process, as that is guaranteed to be unique for some time around each process' execution.

- 27 -

The fileId field uniquely identifies all records of I/Os on a single file. If a file is opened several

times, it must be assigned a different fileId for each open. The identifier must be unique within

each process, and should be unique across the trace, if possible. While uniqueness across the trace

is not necessary, it is useful for tracking down bugs in the trace analysis software. Note that for

physical records, fileld is an identifier for the disk written to. Because each physical disk is only

"opened" once--by the operating system--all physical records for the same disk should use the

same fileld.

The operationld field identifies all records associated with a single call to read or write. The

logical record for that system call (there is only one logical record per read or write) can then be

associatedwithallofthephysicalI/Ositgenerated.Thisshows thetranslationfrom a logicalfile

positionto physicaldiskblocksforan I/O. Like the fileIdfield,itmust be unique withina

process, though uniqueness across the entire trace is preferable.

The offset and length fields have different meanings for logical and physical records. The record

type is determined by flags in recordType, as shown in the "include" file. For a logical record,

offset is the byte offset into the file, and length is the length of the re,quest. These numbers may

be affected by flags in the compression field. In physical blocks, offset is the physical block

accessed on disk, and length is the number of consecutive blocks, starting with offset, that are

accessed. All physical block numbers are relative to TRACE_BLOCK SIZE; thus, if the file

system always does physical l/Ds in 4 KB blocks, all block and length numbers in physical records

will be multiples of 8, since TRACEBLOCKSIZE is 512.

The time fields are all treated as differences. StartTime is the difference between when this I/O

started and when the I/O of the previous record started. CompletlonTime is the difference

between when this I/O started and when its completion was reported to the process. For physical

- 28 -

records, this will likely be the time between when the request was sent to disk and when the

interrupt occurred. For logical records, though, this time may be much longer, as a process is not

always restarted immeAiately when the I/O it is awaiting finishes. Finally, processTime is the

difference in process CPU time between when this FO started and when this process's previous FO

started. All of these times are measuw_ in units of 10 _s.

Here, then, is the include file which we used for the code which generated and interpreted the

traP.s:

* iotrace.h --

* This file contains the declarations necessary to interpret the

* traces. It includes a definition of a full trace record and

* all of the flags used in the trace records.

./

/*

* These are the fields in an individual trace record. They are printed

* in the order they appear in the structure. The recordType, compression,

* startTime, completionTime, and processTime fields are always present.

* Flags in the compression field indicate whether the remaining fields

* are present, or whether the field values are inferred from previous
* records.

*/
struct traceRecord {

unsigned short recordType;

unsigned short compression;

unsigned int offset;

unsigned int

unsigned long

unsigned long

unsigned int

length;

startTime;

completionTime;

operationId;

unsigned int

unsigned int

fileld;

processId;

unsigned int processTime;

};

/* type of trace record (see below) */

/* compression flags (see below) */

/* offset in file (logical) OR

* physical block */

/* length of access */

/* I/O start time (wall clock) */

/* I/O completion time (wall clock) */

/* number to associate logical and

* physical I/Os */

/* unique file identifier */

/* process that made the request (for

* logical I/Os only) */

/* time in 10 _s ticks since this

* process made its last I/O */

-29 -

/*

* Flags used in the recordType field.

*/

/*

* Describes the type of data accessed in this record.

*/
#define TRACE FILE DATA 0x0 /* file (user) data */

#define TRACE META DATA 0xl /* metadata, such as indirect blocks */

#define TRACE READAHEAD 0x2 /* readahead blocks requested by FS */

#define TRACE VIRTUAL_MEM 0x3 /* blocks requested by VM paging */

*

* Is this a logical or physical record? The value of this flag can affect

* the interpretation of the rest of the record.

*/
#define TRACE LOGICAL RECORD 0x80

#define TRACE--PHYSICA_ RECORD 0x00

/*

* What type of access was requested?

*/
#define TRACE READ 0x00

#define TRACE WRITE 0x40

/*

* Was the request synchronous or asynchronous?
*/

#define TRACE SYNC 0x00

#define TRACE ASYNC Ox08

*

* This value for the recordType field is for a _com_ent" record. It is

* ignored by any program reading the trace, but it can be used

* for human-readable comments. I used it to record

* correspondences between fileIds and actual file names, as well as

* to identify each trace with information in the trace itself.

*/

#define TRACE COMMENT 0xff

/*

* The next two flags are optional. They are for data analysis purposes

* only. If the trace is being used for simulations, they will be irrelevant.

* Was the request satisfied in the cache or were disk blocks necessary?
*/

#define TRACE_CACHE_HIT 0x00

#define TRACECACHE_MISS 0x20

/*

* If the block was in the cache, was it a readahead block?

*/

#define TRACE_RA_HIT 0xl0

#define TRACE_RA_MISS 0x00

-30-

*

* The next set of flags are the compression flags. These flags tell which

* information has been left out of the trace record and how to generate

* the missing information.

*/

/*

* If these flags are set, multiply the relevant value by 512. These

* flags should only be set if the relevant information is actually in

* the record. Thus, if the offset is not in this record, the

* TRACE_OFFSET_IN_BLOCKS flags should not be set.

#define TRACE OFFSET_IN_BLOCKS 0x01

#define TRACELENGTH_IN_BLOCKS 0x02

#define TRACE_BLOCK SIZE 512

/*

* If any of these flags are set, the corresponding field is missing

* from the trace record. The information in them may be computed as

* follows:

* processId:
* fileId:

* operationId:

* block:

,

* length:

take from previous record in trace

take from previous record by this process

take from previous record of this file

(NOTE: for logical-only traces, this field is

useless and should be disregarded)

sequential with previous access to this file

(ie, previous record starting block + length)

take from previous record of this file

* The program reading the traces should keep track of 32 open files

* for each process. This is the maximum number most UNIX systems

* allow open, and it's unlikely that a process will actively access

* more than that. If it does, the traces will still be readable;

* they'll Just be quite long.

* If either length or block is present, multiply by TRACE_BLOCK_SIZE

* if the appropriate flag is set.

* Time values are always expressed as differences in time. Start time

* in the trace is startTime[cur] - startTime[cur-1]. Completion time

* is completionTime[cur] - startTime[cur]. Process time is the

* elapsed process time since the last I/O for this process was started.

* All time valDes are in in 10 _s units. Since time values are

* always compressed, there are no compression flags for them.
*/

#define TRACENOLENGTH 0x04

#define TRACENO_BLOCK 0x40

#define TRACE NO_PROCESSID 0x08

#define TRACE_NO_OPERATIONID 0x20

#define TRACE NO_FILEID 0xS0

-31 -

